Amoeba Genome Reveals Dominant Host Contribution to Plastid Endosymbiosis
نویسندگان
چکیده
منابع مشابه
Plastid endosymbiosis, genome evolution and the origin of green plants.
Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition...
متن کاملThe genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria.
Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of "Candidatus Amoebophilus asiaticus," an obligate intracellular amoeba symbiont belonging to the Bacteroidetes. The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all g...
متن کاملEndosymbiosis: Double-Take on Plastid Origins
Plastids--the light-harvesting machines of plant and algal cells--evolved from cyanobacteria inside a eukaryotic host more than a billion years ago. New data reveal that a mysterious unicellular alga acquired its photosynthetic apparatus much more recently than other eukaryotes, affording a second look at the primary endosymbiotic origin of plastids.
متن کاملA phylogenomic approach for studying plastid endosymbiosis.
Gene transfer is a major contributing factor to functional innovation in genomes. Endosymbiotic gene transfer (EGT) is a specific instance of lateral gene transfer (LGT) in which genetic materials are acquired by the host genome from an endosymbiont that has been engulfed and retained in the cytoplasm. Here we present a comprehensive approach for detecting gene transfer within a phylogenetic fr...
متن کاملThe Plastid Genome of Eutreptiella Provides a Window into the Process of Secondary Endosymbiosis of Plastid in Euglenids
Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology and Evolution
سال: 2020
ISSN: 1537-1719
DOI: 10.1093/molbev/msaa206